
Graph Algorithms:
Combinatorial Problems

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2017/2018

Combinatorial Problems: Graph Algorithms
• As discussed before, many problems, including graph problems, require choices to

be done during the course of their solving, and these choices are not guaranteedly
correct.

• Hence alternatives have to be searched during program execution, and these may
lead to a combinatorial explosion. This is the case of two well known problems

a. Minimum Hamiltonian tours (Traveling Salesman)

b. Minimum number of colours

• In the first case, for a graph with n nodes (cities in the TSP jargon) the tour is
constructed “city by city” and the choice of the next city to visit is not certain.
Hence, a total of n! possibilities might have to be tested.

• In the second case, the colours are assigned to the nodes, one by one, and the
choices might have to be changed when the colours assigned prevent the
unassigned nodes to be coloured. In the worst case, assigning one of k colours to
each of the n nodes of a graph, requires testing kn potential combinations of
colours.

Combinatorial Problems: Graph Algorithms15 December 2017 2

Combinatorial Problems: Graph Algorithms
• These problems can be divided in, broadly, two main types. Informally,

• Satisfaction Problems
• Finding a solution for a problem requires the exploitation of an exponential

number of possibilities, but checking whether a proposed solution is correct
can be done in polynomial time.

• Optimization Problems
• Not only finding a solution for a problem requires the exploitation of an

exponential number of possibilities, but checking whether a proposed solution
is correct also requires an exponential time.

• More formally, the first type of problems are known to be NP-complete, whereas
the second are known to be NP-Hard (there are many different classes for
classifying these combinatorial problems – but we will not address them here*).
Note: See the classic book by Garey and Johnson, “Computers and Intractability: A Guide to
the Theory of NP-Completeness”, or the link below for a quick introduction to the topic

https://en.wikipedia.org/wiki/Computers_and_Intractability

Combinatorial Problems: Graph Algorithms15 December 2017 3

Combinatorial Problems
• The combinatorial nature of these problems, requiring non-deterministic search can

be illustrated by the following example, where 3 binary choices are required, with 23
potential solutions.

Combinatorial Problems: Graph Algorithms15 December 2017 4

a

b

cc

b

cc

a = 1
b = 1
c = 1

a = 1
b = 1
c = 2

a = 1
b = 2
c = 1

a = 1
b = 2
c = 2

a = 2
b = 1
c = 1

a = 2
b = 1
c = 2

a = 2
b = 2
c = 1

a = 2
b = 2
c = 2

Combinatorial Problems: Graph Algorithms
• Because of this combinatorial explosion, specialised techniques and languages

have been proposed to deal with such complexity, although the basis problem
remains.

• In general, the problems can only be solved for a relatively small size of n,
although specialised algorithms, techniques and languages may push forward,
significantly, the limit on the size of n that can be solved in a reasonable time.

• Here we will simply address a naïf approach to solve these problems and assess,
experimentally, their efficiency in terms of cpu time.

• We illustrate the algorithms with the TSP problem, and leave the k-colouring
problem as an exercise.

• TSP (Travelling Salesperson Problem):

• Satisfaction: Find a tour that visits all nodes of a graph, not repeating any of
the nodes that does not exceed a given length.

• Optimization: Find the shortest tour that visits all nodes of a graph, not
repeating any of the nodes (except the first and last node).

Combinatorial Problems: Graph Algorithms15 December 2017 5

TSP Problem
• To solve this type of problems it is convenient to consider a recursion approach,

where the problems to be solved have a decreasing complexity, until they become
trivial.

• In this case, we consider two lists (arrays) of nodes:

• Those that have already been visited in the tour (Visited)

• Those that have not been visited yet. (ToVisit)

• On each step, a new node is moved from the ToVisit set, to the Visited step

• Hence the problem becomes increasingly simpler, as there are less nodes to
chose from, until there is no more choices to be made.

• As with any recursive function, the first thing to do is to check whether the
recursion should be ended (trivial problem);

• Otherwise solve a simpler problem and use the solution of the simpler problem to
obtain the solution of the larger problem.

Combinatorial Problems: Graph Algorithms15 December 2017 6

TSP Problem: Optimisation
• We exemplify this technique below with the optimisation version of the problem,

that is easier to program.

• In addition to the Visited and ToVisit nodes, the graph, G, and the length of the
path already done, CostSoFar, are parameters of the function.

• If the problem is trivial (no more modes to visit) the function simply adds the cost of
the arc between the last visited node and the first to close the tour, and returns
both the tour and its cost.

function [Tour,Cost] = hamilton_opt(G,Visited,CostSoFar,ToVisit)
if length(ToVisit) == 0

Tour = Visited;
Cost = CostSoFar + G(Visited(end), Visited(1));

else
... % solve the problem from a simpler one

end
end

Combinatorial Problems: Graph Algorithms15 December 2017 7

TSP Problem: Optimisation
• Otherwise,

• each node in the ToVisit list, is selected in sequence as the next node,
• a best tour is obtained (recursively), after updating the values of the

parameters: newVisited (NewVST) and newToVisit (NewTVS) nodes, as well
as the new CostSoFar (NewCSF)

• among all the best tours with each of the next nodes, the overall best tour is
selected and returned as the optimal solution.

Combinatorial Problems: Graph Algorithms15 December 2017 8

Cost = Inf; Tour = [];
for i = 1:length(ToVisit)

last = Visited(end);
next = ToVisit(i);
NewCSF = CostSoFar + G(last, next);
NewVST = [Visited,next];
NewTVS = [ToVisit(1:i-1),ToVisit(i+1:end)];
[T,C] = hamilton_opt(G,NewVST,NewCSF,NewTVS);
if C < Cost

Tour = T;
Cost = C;

end
end

TSP Problem: Optimisation
• The complete algorithm is shown below:
function [Tour,Cost] = hamilton_opt(G,Visited,CostSoFar,ToVisit)

if length(ToVisit) == 0
Tour = Visited;
Cost = CostSoFar + G(Visited(end), Visited(1));

else
Cost = Inf; Tour = [];
for i = 1:length(ToVisit)

last = Visited(end);
next = ToVisit(i);
NewCSF = CostSoFar + G(last, next);
NewVST = [Visited,next];
NewTVS = [ToVisit(1:i-1),ToVisit(i+1:end))];
[T,C] = hamilton_opt(G,NewVST,NewCSF,NewTVS);
if C < Cost

Tour = T;
Cost = C;

end
end

end
end

Combinatorial Problems: Graph Algorithms15 December 2017 9

TSP Problem: Satisfaction
• We may now adapt this technique to obtain the satisfaction version of the problem.

• In addition to the previous ones, the maximum Cost, m, of the accepted tours is
the list of input parameters.

• As before, the trivial problem is checked first (no more nodes to visit).

• If the overall cost is longer than the maximum accepted cost, then the returned
cost is inf (we consider a tour of infinite length as a no tour, i.e. an unacceptable
solution).

function [Tour,Cost] = hamilton_sat(G,Visited,CostSoFar,ToVisit,m)
if length(ToVisit) == 0

Tour = Visited;
Cost = CostSoFar + G(Visited(end), Visited(1));
if Cost > m

Cost = Inf;
end

else
... % solve the problem from a simpler one

end
end

Combinatorial Problems: Graph Algorithms15 December 2017 10

TSP Problem: Satisfaction
• Otherwise,

• the recursive call is done as before, but only until an acceptable solution (i.e.
one with a Cost less or equal to the maximum cost acceptable) is found.

• Hence the loop is done with a WHILE instruction with an additional test on the
cost (to check whether it is worth to continue).

Combinatorial Problems: Graph Algorithms15 December 2017 11

Cost = Inf;
Tour = [];
i = 0;
while i < length(ToVisit) && Cost > m

i = i + 1;
last = Visited(end);
next = ToVisit(i);
NewCSF = CostSoFar + G(last, next);
NewVST = [Visited,next];
NewTVS = [ToVisit(1:i-1),ToVisit(i+1:end)];
[T,C] = hamilton_sat(G,NewVST,NewCSF,NewTVS,m);
if C < m

Tour = T;
Cost = C;

end
end

TSP Problem: Satisfaction
• The complete algorithm is shown below:
function [Tour,Cost] = hamilton_sat(G,Visited,CostSoFar,ToVisit,m)

if length(ToVisit) == 0
Tour = Visited;
Cost = CostSoFar + G(Visited(end), Visited(1));
if Cost > m Cost = Inf; end

else
Cost = Inf; Tour = [];
i = 0;
while i < length(ToVisit) && Cost > m

i = i + 1;
last = Visited(end);
next = ToVisit(i);
NewCSF = CostSoFar + G(last, next);
NewVST = [Visited,next];
NewTVS = [ToVisit(1:i-1),ToVisit(i+1:end))];
[T,C] = hamilton_sat(G,NewVST,NewCSF,NewTST, m);
if C < Cost

Tour = T; Cost = C;
end

end
end

end
Combinatorial Problems: Graph Algorithms15 December 2017 12

TSP Problem: Satisfaction with Heuristics
• In combinatorial problems it often pays off to follow some heuristic regarding the

best decision to make.

• In this case, an intuitive heuristic to decide the next node to visit, is to select,
among the nodes not visited yet, the node that is closer to the last node.

• The adaptation of the satisfaction version of the previous program follows, with the
same input parameters.

function [Tour,Cost] = hamilton_sat_h(G,Visited,CostSoFar,ToVisit,m)
if length(ToVisit) == 0

Tour = Visited;
Cost = CostSoFar + G(Visited(end), Visited(1));
if Cost > m

Cost = Inf;
end

else
... % solve the problem from a simpler one

end
end

Combinatorial Problems: Graph Algorithms15 December 2017 13

TSP Problem: Satisfaction with Heuristics
• Otherwise,

• As before, the recursive call is only done until an acceptable solution is found.
• However, the the next node is not chosen is sequence (e.g. i+1 as before) but

selected by function nextBest/4.
• Moreover, the NewTVS is updated, by removing the selected node.

Combinatorial Problems: Graph Algorithms15 December 2017 14

Cost = Inf;
Tour = [];
i = 0;
while i < length(ToVisit) && Cost > m

i = i + 1;
last = Visited(end);
next = nextBest(i,last,ToVisit,G);
NewCSF = CostSoFar + G(last, next);
NewVST = [Visited,next];
NewTVS = remove(next, ToVisit);
[T,C] = hamilton_sat_h(G,NewVST,NewCSF,NewTVS,m);
if C < m

Tour = T;
Cost = C;

end
end

TSP Problem: Satisfaction with Heuristics
• For completion we show below a possible implementation of functions remove/2

and nextBest/4, used in the heuristic algorithm for the satisfaction problem.

• The remove function builds a new List from the last one, copying all the values
except the node to be removed.

• The function nextBest, sorts the nodes of the ToVisit list, according to their
distance to the last visited node, and selects the ith closest node.

Combinatorial Problems: Graph Algorithms15 December 2017 15

function NewList = remove(node, List)
NewList = [];
for v = List

if v != node NewList = [NewList,v]; end
end

end

function next = nextBest(i,last,ToVisit,G)
Next = sortNext(G, last, ToVisit);
next = Next(i);

end

TSP Problem: Satisfaction with Heuristics
• For sorting the nodes according to their distance to the last node, we may use the

function below, that adapts the standard bubble sort function.

Combinatorial Problems: Graph Algorithms15 December 2017 16

function Next = sortNext(G,last,List)
 n = length(List);
 Next = List;
 for k = n:-1:2
 for i = 1:k-1
 if G(last,Next(i)) > G(last, Next(i+1))
 x = Next(i);
 Next(i) = Next(i+1);
 Next(i+1) = x;
 end
 end
 end
end

TSP Problem: Satisfaction with Heuristics
• The algorithm (without the remove and nextBest functions) is shown below:
function [Tour,Cost] = hamilton_sat(G,Visited,CostSoFar,ToVisit,m)

if length(ToVisit) == 0
Tour = Visited;
Cost = CostSoFar + G(Visited(end), Visited(1));
if Cost > m Cost = Inf; end

else
Cost = Inf; Tour = [];
i = 0;
while i < length(ToVisit) && Cost > m

i = i + 1;
last = Visited(end);
next = nextBest(i,last,ToVisit,G);
NewCSF = CostSoFar + G(last, next);
NewVST = [Visited,next];
NewTVS = remove(next, ToVisit);
[T,C] = hamilton_sat_h(G,NewVST,NewCSF,NewTVS,m);
if C < m

Tour = T; Cost = C;
end

end
end

end
Combinatorial Problems: Graph Algorithms15 December 2017 17

NP Problems: Assessing Performance
• Intuitively, we may expect a solution to the optimisation problem to be harder to

find than that of a satisfaction problem (if the satisfaction goal is not too difficult),
since we only need to find one solution, not comparing all the solutions

• Moreover, we may also expect that the heuristic version of the satisfaction
algorithm is more efficient than the “sequential” one, if our heuristic is adequate.

• But how can we measure this efficiency?

• In practice, what can be done is to use a system defined function to measure the
time that it took to execute a function. All programming languages have some such
function. In Matlab function

[total, user, system] = cputime();

returns the total / user / system time elapsed since the start of the Matlab IDE
(time is given in seconds).

• Hence to measure the time this function must be called before and after execution
and the execution time is the difference between the returned results.

Combinatorial Problems: Graph Algorithms15 December 2017 18

NP Problems: Assessing Performance
• We show below an example of assessing execution with the heuristic satisfaction

version of the TSP (the other versions are similar).

• The function shown simply “wraps” the previously defined hamiltonian functions
with calls to the cputime function, so as to return, not only the values of the tours
and their costs, but also the elapsed user time, i.e. that used by the program itself
to execute

Combinatorial Problems: Graph Algorithms15 December 2017 19

function [Tour,Cost,time] = tsp_sat_h(G, maxCost);
 [t0, u0, s0] = cputime();
 n = size(G,1);
 [Tour,Cost] = hamilton_sat_h(G,[1],0,2:n,maxCost);
 [t1, u1, s1] = cputime();
 time = u1-u0;
end

NP Problems: Assessing Performance
• Below we show results obtained with the different versions of the TSP applied to

graph in file “graph_10_90.txt”, previously read into the adjacency matrix M10

Combinatorial Problems: Graph Algorithms15 December 2017 20

>> [Tour,Cost,time] = tsp_opt(M10)
Tour = 1 3 6 5 9 10 2 8 7 4
Cost = 201
time = 115.17

>> [Tour,Cost,time] = tsp_sat(M10, 210)
Tour = 1 3 6 5 9 10 2 8 7 4
Cost = 201
time = 19.027

>> [Tour,Cost,time] = tsp_sat_h(M10, 210)
Tour = 1 3 6 5 9 10 2 8 7 4
Cost = 201
time = 3.3025

>> [Tour,Cost,time] = tsp_sat(M10, 220)
Tour = 1 3 2 5 9 10 8 7 6 4
Cost = 219
time = 12.917

>> [Tour,Cost,time] = tsp_sat_h(M10, 220)
Tour = 1 3 2 5 9 10 8 7 6 4
Cost = 219
time = 0.49499

